Modeling AAA+ ring complexes from monomeric structures.

نویسندگان

  • Alexander V Diemand
  • Andrei N Lupas
چکیده

AAA+ proteins form large, ring-shaped complexes, which act as energy-dependent unfoldases of macromolecules. Many crystal structures of proteins in this superfamily have been determined, but mostly in monomeric or non-physiological oligomeric forms. The assembly of ring-shaped complexes from monomer coordinates is, therefore, of considerable interest. We have extracted structural features of complex formation relating to the distance of monomers from the central axis, their relative orientation and the molecular contacts at their interfaces from experimentally determined oligomers and have implemented a semi-automated modeling procedure based on RosettaDock into the iMolTalk server (http://protevo.eb.tuebingen.mpg.de/iMolTalk). As examples of this procedure, we present here models of Apaf-1, MalT and ClpB. We show that the recent EM-based model of the apoptosome is not compatible with the conserved structural features of AAA+ complexes and that the D1 and D2 rings of ClpB are most likely offset by one subunit, in agreement with the structure proposed for ClpA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes

Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensit...

متن کامل

A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein

Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusu...

متن کامل

Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 · Rvb2.

As building blocks of diverse macromolecular complexes, the AAA+ ATPases Rvb1 and Rvb2 are crucial for many cellular activities including cancer-related processes. Their oligomeric structure and function remain unclear. We report the crystal structures of full-length heteromeric Rvb1·Rvb2 complexes in distinct nucleotide binding states. Chaetomium thermophilum Rvb1·Rvb2 assemble into hexameric ...

متن کامل

Application of dimeric and monomeric ortho-palladated complexes as an efficient catalysts for Heck cross-coupling reaction

The catalytic acvtivity of dimeric and monomeric ortho-palladated complexes [Pd{C6H2(CH2NH2-(OMe)2,3,4}(µ-Cl)]2)2) and [Pd{C6H2(CH2NH2-(OMe)2,3,4}Cl(PPh3)](3), was investigated in Heck cross-coupling reaction. These complexes are more active and efficient catalysts for Heck cross-coupling reaction. The palladium complexes 2 and 3 is employed in the Heck cross-coupling reaction between styrene a...

متن کامل

Optimizing ring assembly reveals the strength of weak interactions.

Most cellular processes rely on large multiprotein complexes that must assemble into a well-defined quaternary structure in order to function. A number of prominent examples, including the 20S core particle of the proteasome and the AAA+ family of ATPases, contain ring-like structures. Developing an understanding of the complex assembly pathways employed by ring-like structures requires a chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of structural biology

دوره 156 1  شماره 

صفحات  -

تاریخ انتشار 2006